238 research outputs found

    Painting Our Treescapes: A Visual

    Get PDF
    Two children (ages 6 and 9) represent an afternoon spent in their urban, wintery treescape through visual art, photo documentation, and written narrative. The first piece, My Imaginary Forest , considers the seasons, animals, and issues of artistic representation of nature. The second piece describes the relationship between a favourite tree and a child, and considers others -- both present and future -- who also occupy Our Knotty Tree . All of the words, visual art, and photo selection are those of the children

    The Representation of Object Distance: Evidence from Neuroimaging and Neuropsychology

    Get PDF
    Perceived distance in two-dimensional (2D) images relies on monocular distance cues. Here, we examined the representation of perceived object distance using a continuous carry-over adaptation design for fMRI. The task was to look at photographs of objects and make a judgment as to whether or not the item belonged in the kitchen. Importantly, this task was orthogonal to the variable of interest: the object's perceived distance from the viewer. In Experiment 1, whole brain group analyses identified bilateral clusters in the superior occipital gyrus (approximately area V3/V3A) that showed parametric adaptation to relative changes in perceived distance. In Experiment 2, retinotopic analyses confirmed that area V3A/B reflected the greatest magnitude of response to monocular changes in perceived distance. In Experiment 3, we report that the functional activations overlap with the occipito-parietal lesions in a patient with impaired distance perception, showing that the same regions monitor implied (2D) and actual (three-dimensional) distance. These data suggest that distance information is automatically processed even when it is task-irrelevant and that this process relies on superior occipital areas in and around area V3A

    Analysis of the Utilization of Nebraska Medicine\u27s Price Transparency Tool

    Get PDF
    Healthcare costs have become a significant concern for patients, healthcare facilities, economists, and politicians within the United States. In an effort to understand and reduce health-related costs, price transparency laws were enacted at the beginning of 2021. Because of these new laws, hospitals must provide a price transparency tool for their patients. “Price transparency in healthcare makes pricing information more readily available, defines the value of services, and enables patients and other care purchasers to identify, compare, and choose providers that offer the desired level of value” (AAMC, 2022). However, research results on price transparency tools use and efficacy is mixed. This study aims to analyze the utilization of the Nebraska Medicine price transparency tool through website traffic data. Information will be extracted from a third-party marketing tool, SEMRush, to determine how the local population is using the tool. The findings of this study may inform the prices of future services, help the hospital prioritize services, make inferences about health trends across the state, and prepare the organization for an increasingly competitive healthcare field

    Expression of Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Neurotrophin-3 mRNAs in Human Cortical Xenografts

    Get PDF
    Trophic factors play an important role in the development of neurons and glia. In order to study the involvement of neurotrophins in human cortical development, human fetal parietal cortical tissue, obtained after early elective abortions, was transplanted to cortical cavities in immunosuppressed rats. Using in situ hybridization it was demonstrated that nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNAs are expressed in developing human cortical xenografts. We conclude that neurotrophins may play a role in human cortical development and rat-derived astroglial cells could be involved in establishing reciprocal “permissive sites”

    The social cerebellum: A large-scale investigation of functional and structural specificity and connectivity

    Get PDF
    The cerebellum has been traditionally disregarded in relation to nonmotor functions, but recent findings indicate it may be involved in language, affective processing, and social functions. Mentalizing, or Theory of Mind (ToM), is the ability to infer mental states of others and this skill relies on a distributed network of brain regions. Here, we leveraged large-scale multimodal neuroimaging data to elucidate the structural and functional role of the cerebellum in mentalizing. We used functional activations to determine whether the cerebellum has a domain-general or domain-specific functional role, and effective connectivity and probabilistic tractography to map the cerebello-cerebral mentalizing network. We found that the cerebellum is organized in a domain-specific way and that there is a left cerebellar effective and structural lateralization, with more and stronger effective connections from the left cerebellar hemisphere to the right cerebral mentalizing areas, and greater cerebello-thalamo-cortical and cortico-ponto-cerebellar streamline counts from and to the left cerebellum. Our study provides novel insights to the network organization of the cerebellum, an overlooked brain structure, and mentalizing, one of humans\u27 most essential abilities to navigate the social world

    State-selective electron transfer and ionization in collisions of highly charged ions with ground-state Na(3s) and laser-excited Na∗(3 p)

    Get PDF
    Single electron transfer and ionization in collisions of N 5 + and Ne 8 + with ground state Na(3s) and laser excited Na∗(3p) are investigated both experimentally and theoretically at collision energies from 1 to 10 keV/amu, which includes the classical orbital velocity of the valence electron. State-selective partial cross sections are obtained using recoil-ion momentum spectroscopy in combination with a magneto-optically cooled Na atom target. A strong dependence of the cross sections on the collision energy is observed. In general, both the relative magnitude and the energy dependence are found to be in good agreement with classical-trajectory Monte Carlo calculations.Fil: Blank, Ingrid. University of Groningen; Países BajosFil: Otranto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Meinema, C.. University of Groningen; Países BajosFil: Olson, R. E.. University of Missouri; Estados UnidosFil: Hoekstra, R.. University of Groningen; Países Bajo

    Novel Models of Streptococcus canis Colonization and Disease Reveal Modest Contributions of M-Like (SCM) Protein

    Get PDF
    Streptococcus canis is a common colonizing bacterium of the urogenital tract of cats and dogs that can also cause invasive disease in these animal populations and in humans. Although the virulence mechanisms of S. canis are not well-characterized, an M-like protein, SCM, has recently identified been as a potential virulence factor. SCM is a surface-associated protein that binds to host plasminogen and IgGs suggesting its possible importance in host-pathogen interactions. In this study, we developed in vitro and ex vivo blood component models and murine models of S. canis vaginal colonization, systemic infection, and dermal infection to compare the virulence potential of the zoonotic S. canis vaginal isolate G361 and its isogenic SCM-deficient mutant (G361∆scm). We found that while S. canis establishes vaginal colonization and causes invasive disease in vivo, the contribution of the SCM protein to virulence phenotypes in these models is modest. We conclude that SCM is dispensable for invasive disease in murine models and for resistance to human blood components ex vivo, but may contribute to mucosal persistence, highlighting a potential contribution to the recently appreciated genetic diversity of SCM across strains and hosts

    Improved Proper Name Recall in Aging after Electrical Stimulation of the Anterior Temporal Lobes

    Get PDF
    Evidence from neuroimaging and neuropsychology suggests that portions of the anterior temporal lobes (ATLs) play a critical role in proper name retrieval. We previously found that anodal transcranial direct current stimulation (tDCS) to the ATLs improved retrieval of proper names in young adults (Ross et al., 2010). Here we extend that finding to older adults who tend to experience greater proper-naming deficits than young adults. The task was to look at pictures of famous faces or landmarks and verbally recall the associated proper name. Our results show a numerical improvement in face naming after left or right ATL stimulation, but a statistically significant effect only after left-lateralized stimulation. The magnitude of the enhancing effect was similar in older and younger adults but the lateralization of the effect differed depending on age. The implications of these findings for the use of tDCS as tool for rehabilitation of age-related loss of name recall are discussed

    A transformer model for learning spatiotemporal contextual representation in fMRI data

    Get PDF
    AbstractRepresentation learning is a core component in data-driven modeling of various complex phenomena. Learning a contextually informative representation can especially benefit the analysis of fMRI data because of the complexities and dynamic dependencies present in such datasets. In this work, we propose a framework based on transformer models to learn an embedding of the fMRI data by taking the spatiotemporal contextual information in the data into account. This approach takes the multivariate BOLD time series of the regions of the brain as well as their functional connectivity network simultaneously as the input to create a set of meaningful features that can in turn be used in various downstream tasks such as classification, feature extraction, and statistical analysis. The proposed spatiotemporal framework uses the attention mechanism as well as the graph convolution neural network to jointly inject the contextual information regarding the dynamics in time series data and their connectivity into the representation. We demonstrate the benefits of this framework by applying it to two resting-state fMRI datasets, and provide further discussion on various aspects and advantages of it over a number of other commonly adopted architectures

    Imatinib Enhances Functional Outcome after Spinal Cord Injury

    Get PDF
    We investigated whether imatinib (Gleevec®, Novartis), a tyrosine kinase inhibitor, could improve functional outcome in experimental spinal cord injury. Rats subjected to contusion spinal cord injury were treated orally with imatinib for 5 days beginning 30 minutes after injury. We found that imatinib significantly enhanced blood-spinal cord-barrier integrity, hindlimb locomotor function, sensorimotor integration, and bladder function, as well as attenuated astrogliosis and deposition of chondroitin sulfate proteoglycans, and increased tissue preservation. These improvements were associated with enhanced vascular integrity and reduced inflammation. Our results show that imatinib improves recovery in spinal cord injury by preserving axons and other spinal cord tissue components. The rapid time course of these beneficial effects suggests that the effects of imatinib are neuroprotective rather than neurorestorative. The positive effects on experimental spinal cord injury, obtained by oral delivery of a clinically used drug, makes imatinib an interesting candidate drug for clinical trials in spinal cord injury
    corecore